
0020-7683(94)EOO34-S

~ Pergamon

Int. J. Solids Structures Vol. 31, No. 23, pp. 3295-3313, 1994
Copyright © 1994 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
002~7683/94 $7.00 + .00

NUMERICAL SIMULATION OF THE EFFECT OF
DAMAGED INDUCED SOFTENING ON THE

INFLATION OF A CIRCULAR RUBBER MEMBRANE

ALAN S. WINEMAN
Department of Mechanical Engineering and Applied Mechanics, The University of Michigan,

Ann Arbor, Michigan 48109, U.S.A.

and

HUGH E. HUNTLEY
Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn,

Michigan 48128, U.S.A.

(Received 24 September 1993; in revised form 10 February 1994)

Abstract-Rubbery materials can undergo deformation induced microstructural changes leading to
softening of response and permanent set. In this work, these materials are modeled by a constitutive
equation that incorporates the following micromechanism: when the deformation becomes large
enough, network junctions break during further increments of deformation and then heal. New
networks are formed by this conversion process, each unstressed in the local configuration at which
it is formed. The constitutive equation is used to describe the response of the particles of an initially
flat circular membrane which is inflated by lateral pressure. The original material and each newly
formed network are assumed to respond as neo-Hookean elastic materials. Results of a numerical
simulation show the influence of this conversion process on the distribution ofstretch ratios, inflated
shapes and the relation between the pressure and the crown stretch ratio.

1. INTRODUCTION

The general form of the constitutive equation for non-linear elastic solids is based on
assumptions which imply that stress arises from a single unchanging material micro
mechanism at all stages of deformation. However, rubber-like materials exhibit changes in
micromechanism evidenced by the occurrence of permanent set under large deformations
(Hart-Smith, 1966). Rajagopal and Wineman (1992) have presented a constitutive theory
which can be used to model such mechanical response. In their model, the stress is deter
mined by one micromechanism within some regime of deformation; as deformation
increases, a new micromechanism arises which affects the mechanical response. They con
sidered the particular example in which material acts as a rubbery solid if the deformations
are not too large. When deformations become sufficiently large, network junctions in the
original material break and then reform to produce a new network with a new unstressed
local configuration. Their work allowed for continuous conversion of the original material
to new networks as deformation proceeds. It was shown that the material can undergo
substantial softening, and that there is permanent set when the stress is removed.

There have been several applications of this constitutive theory to problems involving
non-homogeneous deformations. The examples all assume that the material is incom
pressible and that new networks are generated at sufficiently large deformations. Wineman
and Rajagopal (1990) studied the finite extension and torsion of a circular cylinder. They
showed that as the angle of twist increases, there evolves an inner core of material which
consists of the original network and an outer shell of the modified material. These regions
are separated by an interface whose radius is determined by the angle of twist. They also
studied the influence of the material response on the torque-twist relation.

Huntley (1992) considered the problem in which a hollow concentric cylinder is fixed
at its inner surface and its outer surface is rotated about the centerline. Each particle of the
cylinder is subjected to a simple shear deformation, the magnitude of which decreases with
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increasing radius. As the rotation increases, the cylinder develops an inner core of multi
network material and an outer shell oforiginal material. They are separated by an interface
whose radius can be determined from the shear response of the original material and the
applied moment.

Huntley (1992) also analysed the radial expansion of thick-walled hollow spheres
under either internal pressure or external radial tension. Each particle is subjected to equal
biaxial extension, with the stretch ratio decreasing with the radius. As in the other examples,
there are two regions ofmaterial response. There is an inner spherical shell ofmulti-network
material and an outer shell of original material. The radius of the interface is determined
by the radius of the inner or outer surface. Huntley determined the influence of the material
response on the pressure-radius relation of the hollow sphere.

The present work is concerned with a thin uniform circular sheet of material which is
fixed at its boundary, and which is subjected to a uniform pressure over one of its surfaces.
The sheet inflates into an axially symmetric bubble in which each particle can be regarded
as being in a state of unequal biaxial extension. It is expected that the crown region consists
of multi-network material, while the support region consists of the original material. There
are several reasons for studying this membrane inflation problem. First, it simulates a
possible experiment. Indeed, the inflation of a circular membrane has been used in non
linear elasticity in conjunction with the determination ofmaterial properties. Treloar (1944)
measured profiles of the inflated sheet. Adkins and Rivlin (1952) calculated the profiles
using a measured strain energy density function in order to compare their results with the
data of Treloar. Hart-Smith and Crisp (1967) and Wineman et al. (1979) each proposed
methods for using the measured profile to determine the strain energy function in non
linear elasticity. It may be possible to use this experiment as a means ofmeasuring properties
in the constitutive theory considered here. Second, in the examples mentioned above, the
interface lies in the interior of a cylinder or a sphere. The membrane configuration provides
a means of directly observing the location of the interface. Third, the problem requires a
more sophisticated method of solution for the deformation than in the previous examples.
Finally, when the material response is non-linear elastic, the pressure-membrane height
relation usually has a local maximum. It is interesting to determine the effect on this
maximum for the material response considered here. In this work then, consideration is
given to the development and application of a new constitutive equation, issues that arise
in carrying out a numerical solution, and implications of this material model for the
response of the structure.

The constitutive equation is presented in Section 2 and the equations governing the
response of the inflated membrane are presented in Section 3. Section 4 contains the
formulation of the boundary value problem for the inflated shape of the membrane. This
is solved by the numerical method outlined in Section 5. Results for a numerical example
are discussed in Section 6.

2. CONSTITUTIVE EQUATION

Consider a body which is homogeneous, initially stress free and which undergoes
homogeneous deformations. Let K(O) denote the configuration of a body in its initial
undeformed stress free state, which is taken as a reference configuration, and let K.(t) denote
its configuration at a later time t. The deformation gradient of configuration K(t) with
respect to configuration K(r) is denoted as F~.

It is assumed that there is a regime of deformations from the reference configuration
K(O) in which the mechanical response is that of an incompressible, isotropic, non-linear
elastic solid. Let Fo = F~, a deformation gradient within this regime. The constitutive
equation has the form

(1)

where Do = FoFJ, II and 12 are the principal invariants of Do, W(I], 12 ) is the Helmholtz
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free energy density function, <PI = 2iJW/iJ/h<P-I = -2iJW/iJlz andp is the arbitrary scalar
arising from the incompressibility constraint.

This response can be regarded as governed by a single material micromechanism, the
reconfiguration of macromolecules. It is assumed that there is a set of deformations at
which a new micromechanism is activated. Further deformation then leads to changes in
the microstructure of the material. For convenience in presentation, attention is focused
on the specific micromechanism ofscission ofnetwork junctions, i.e. cross-links or entangle
ments, and their subsequent reforming into new networks with new unstressed local con
figurations. [For further discussion, see Rajagopal and Wineman (1992).]

In order to describe this process, let a scalar parameter S be defined which is associated
with configuration K(t) by the relation

(2)

Parameter s is called the deformation state parameter. At the initial configuration, t = 0,
F0 = I and s = O. The value ofs increases as the deformation becomes larger, and decreases
as the deformation is reduced. For deformation histories which are described by a single
parameter, such as uniaxial extension, equal biaxial deformation and simple shear, it is clear
what is meant by an increasing or decreasing deformation. For more general deformation
histories, there is no unique definition of what is meant by the deformation becoming
"larger" or "smaller". This depends on the particular deformation process under consider
ation. Relation (2) establishes a correspondence between time t and the deformation state
parameter s.

It is assumed that there is a set of deformation gradients F0 corresponding to con
figurations at which the new micromechanism is activated. This event is characterized by
introducing a scalar-valued activation function A(Fo). The new micromechanism is said to
be activated when a deformation gradient of the set satisfies the activation criterion,

(3)

Let each deformation gradient of this set have the same value of the deformation state
parameter s, denoted by Sa' Then the activation function is defined by

(4)

Material frame indifference, isotropy and incompressibility imply that functions A and :E
depend on F0 through its invariants II and Iz. These functions are now denoted by A (II, Iz)
and :E(II,!Z), where the same symbols have been retained for notational simplicity.

Consider a sequence of deformations which increase from the initial state, while the
corresponding values of the parameter s increase monotonically from the value s = O. By
(2), there is a one-to-one correspondence between the times t and the values of s during
this sequence. It is convenient to utilize this correspondence and introduce a change from
time parameter t to deformation state parameter s. Thus, retaining the same notation, K(S)
now denotes the configuration corresponding to deformation state parameter s. Ft denotes
the deformation gradient of the configuration at the current state s with respect to the
configuration at the initial state s = 0 and is denoted by Fo = Ft. Also, introduce the
deformation gradient F.I = Fi, which represents the deformation gradient of the con
figuration at the current state s with respect to the configuration at state s.

During each increment in the sequence of increasing deformation from activation, a
certain volume fraction ofnetwork junctions ofthe original material is broken. This fraction
depends on the extent of deformation of the original material. The newly broken network
junctions then immediately reform to produce a new undistorted network. During further
deformation, this newly formed network deforms and contributes to the total stress. It is
assumed, for the sake of simplicity, that there is no scission of newly formed networks. The
material, as it undergoes this process of microstructural transformation, is said to be



3298 A. S. Wineman and H. E. Huntley

converting. In the remainder of this article, the terminology "network" is generalized to
refer to either the original material or any newly transformed material.

The total stress at each stage of deformation is defined to be the superposition of
contributions from the remaining portion of the original material and from each network
formed during the deformation process. Thus, if u is the Cauchy stress at the deformation
state corresponding to state parameter s,

u = -pI+uR + IS a(S)uN ds
Jsa

(5)

where: (l) p is an arbitrary scalar arising from the constraint of incompressibility; (2) uR

is the stress in the remaining original material; (3) a(s) dS is the volume fraction ofconverted
material formed during the interval of deformation as the state parameter increases from s
to s+ds; (4) UN is the stress per unit volume in the network formed at s. The latter depends
on the deformation gradient Fs, which is the gradient of the current configuration with
respect to the configuration of the material that formed at s.

Let b(s) denote the volume fraction of the remaining portion of the original material
at state s. Then uR has the form

(6)

For simplicity, the rate of decrease of volume fraction of original material is assumed to
equal the rate of increase of volume fraction of material with new microstructure. This
implies that

b(s) = I - IS a(s) ds.
La

(7)

The new network formed at s responds as an incompressible non-linear isotropic elastic
material. Its configuration at s is taken as a stress free configuration. For simplicity of
modeling, the mechanical response is assumed to be the same for each new network. Thus

(8)

where Bs = FsFj, and tPh tP-l are material property functions which depend on the
invariants ofBs. On combining (5), (6) and (8), the constitutive equation during the process
of conversion as deformation increases beyond activation takes the representation

(9)

It is further assumed that at a typical state of deformation corresponding to s* > Sa,

there exists a sequence of deformations for which the state parameter decreases and no
additional microstructural transformation occurs. Then, a(s) = 0, and the upper limit of
the integral in (9) is fixed at s*. Moreover, (7) shows that b(s) is fixed at the value b(s*).
Equation (9) becomes
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3. BASIC EQUATIONS

The body under consideration is initially a thin disk of uniform thickness 2ho and
radius Ro, with hoiRo « 1. If (R, 0, Z) denote the coordinates of a cylindrical coordinate
system, the body initially occupies the region defined by

(11)

It is assumed that each particle of the disk is in an initial undeformed stress free
configuration, and that the particles are identical. The mechanical response ofeach particle,
as it undergoes a local homogeneous deformation, is described by the constitutive model
in Section 2.

The particles on the surface R = Roare fixed to a rigid boundary. The sheet is assumed
to undergo axisymmetric inflation caused by uniform pressure qo applied to the surface
Z = - ho. The surface Z = ho remains free of traction. As the sheet inflates, each particle
undergoes a different local homogeneous deformation history. During this process, some
particles may undergo conversion. In order to calculate the stresses, it is necessary to track
the local configuration history of each particle. The method for accomplishing this is
described in Section 4.

When the pressure qo is sufficiently small, each particle responds in its non-linear elastic
regime. Since hoiRo « I, the deformed state can be approximated using the theory of non
linear elastic membranes [see Green and Adkins (1960)]. The midsurface Z = 0 in the
reference state deforms into a surface of revolution. According to the membrane theory,
line segments which are perpendicular to the midsurface in the reference state can be
regarded as remaining straight and perpendicular to the surface in its deformed state. The
variation of kinematic quantities through the thickness of the deformed membrane can be
neglected. That is, the deformed shape of a surface Z = constant is approximately the same
as the deformed shape of the surface Z = O. Consider the stress components acting on
surfaces perpendicular to the midsurface. The variation of these stresses through the thick
ness can also be neglected. Consider a surface Z = constant. The stress components acting
on the deformed state of such a surface can be neglected compared to the other stress
components. In effect, it is sufficient to consider quantities associated with the deformed
midsurface. Only their variation over the midsurface need be determined.

Examples involving neo-Hookean and Mooney-Rivlin materials [e.g. Green and
Adkins (1960)], show that the stretch is greatest at the axis of symmetry of the inflated
sheet, Le. its "crown", and decreases monotonically toward the outer support. Thus, the
deformation state parameter s, which increases with the deformation, can be expected to
be greatest at the axis of symmetry and decrease toward the support. The particle at the
crown is the first to undergo activation and conversion. During inflation, the sheet then
consists ofa central region ofmaterial undergoing conversion and an outer region ofelastic
material.

It is assumed that the membrane approximation remains valid during the conversion
process. Consider the particles on a cylindrical surface of radius R in the reference con
figuration. All such particles have approximately the same deformed state, and hence
approximately the same value of the deformation state parameter. Thus conversion is
assumed to occur simultaneously at all particles on that surface. During the conversion
process, these particles are at the same state and hence have the same value of the defor
mation state parameter. As in the case of an elastic membrane, kinematic quantities vary
only over the midsurface.

Kinematics of deformation
Equations for the kinematics of deformation and for equilibrium, incorporating the

membrane approximation, are now presented. They are analogous to those for a non-linear
viscoelastic membrane [see Wineman (1976), where additional details can be found].
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The coordinates of a particle P on the midsurface of the reference configuration are
(R, e, 0). The radius R of a particle acts as its label. If (r, &, z) are the coordinates of particle
P in an inflated state, then

r = r(R),

() e,
z z(R). (12)

r(R) and z(R), Re [0, RoL describe the inflated shape of the midsurface. They also depend
on a parameter, each value of which is associated with a fixed state of inflation. This
inflation parameter is introduced below. The quantities and equations presented in the
remainder of this section apply over the midsurface for each fixed state of inflation, that is
for each fixed value of the inflation parameter. For the purpose of notational brevity, this
parameter is suppressed until it is needed.

It is a consequence of the axisymmetry of the deformation that the circumferential,
meridional and normal directions, relative to the deformed state of the midsurface, are
principal directions of stretch. Using the notation introduced in Section 2, Ao denotes the
ratio of the current length of a line element to its length in the initial configuration. (Ao);,
i = 1,2,3, denotes a principal stretch ratio. For notation convenience, we now let A; = 0'0);'
The stretch ratios are:

in the meridional direction,

= [(~)2 (OZ)2JI12.
AI oR + oR '

in the circumferential direction,

in the normal direction, by incompressibility,

(13)

(14)

(15)

Equilibrium equations
The principal directions of stretch are also principal directions of stress, due to material

isotropy. Consider a material element bounded by surfaces whose normal vectors are in
the meridional and circumferential directions in the deformed midsurface, and in the
direction normal to the midsurface. Let the normal stresses on these surfaces be denoted
by O't> 0'2, 0'3' respectively. According to the assumptions of membrane theory, 10'3/0'11 « 1,
10'3/0'21 « 1. Hence, each particle is in a state of plane stress.

The differential equation of equilibrium in the meridional direction is

(16)

where

(17)

and the equation has been transformed to apply in the reference configuration. The equation
of equilibrium in the normal direction at each point on the midsurface is
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where" I and "2 are principal curvatures defined by

(Ai _,,2)1/2

"2 = A1 A2 R

3301

(18)

(19)

(20)

and qo is the pressure.
As shown by Green and Adkins (1960), an alternative to eqns (18)-(20) is given by

(21)

Using (20), this leads to the equation

(22)

Because the membrane is being inflated, it is reasonable to assume that near R = 0,
" = or/oR> 0 and the positive sign applies in (22). In the examples presented by Green
and Adkins, the inflated shape of the membrane can expand beyond the support so that
for some particles it is possible that r(R) ~ Ro• In this case, " = or/oR < O.

Stress-stretch relations
Consider an orthonormal coordinate system whose base vectors, at each point of the

deformed membrane, are in the meridional, circumferential and normal directions. With
respect to this system,

(23)

where i; is a principal stretch ratio of a line element in the configuration at s with respect
to its length in the initial configuration. Similarly,

The invariants of Bo are

II = Ai +A~ +AL

12 = ..1.12+ ..1.2"2 + ..1.32•

(24)

(25)

The deformation state parameter is taken to be a function of the radius in 11-12 space, that
is, eqn (2) has the form

(26)

where the specific form will be given in Section 5.

SAS 31:23-1
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Consider the response when S < Sa, i.e. when activation has not yet occurred. The
original network at a particle is assumed to respond as a neo-Hookean material, so that
cPI = ito, a constant, and cP-I =°in eqn (1). It follows fromeqns (1), (24) and the membrane
approximation U 3 = 0, that

UI = itO (AI -AD

U 2 = 1t°(A~ -AD· (27)

Next, consider the response when S > Sa' As a particle undergoes conversion, each newly
formed network is assumed to respond as a neo-Hookean material, so that in (9), tPl = ItN

a constant, and tP-1 = 0. If the modulus of the remaining original material is denoted as
ito = ItR then, in general, ItR ¥- ItN • It follows from (9), (23) and the membrane approxi
mation U 3 = °that

(28)

4. BOUNDARY VALUE PROBLEM

The same approach is used here as was used by Wineman (1976) in the case of a
viscoelastic membrane. A boundary value problem is established for the stretch ratios Al
and A2 and the associated kinematic quantity t], defined in eqn (17), at each inflated state.
Once these have been found for an inflated state, the deformation (12) can be calculated
from eqns (13) and (14). The stresses can be evaluated using eqns (27) and (28).

Smoothness assumptions on the deformation r(R), z(R) imply that Al = A2 at R = 0,
at each inflated shape of the membrane. Let this common value be denoted by t, which is
referred to as the crown stretch ratio. According to the example for neo-Hookean mem
branes in Green and Adkins (1960), the crown stretch ratio increases monotonically as the
membrane becomes more highly inflated. On the other hand, the pressure qo initially
increases, has a local maximum, and then decreases as the membrane inflation increases.
The crown stretch ratio t is therefore used to parametrize the inflated states. Thus,

Al = Al (R, t),

A2 = A2 (R, t),

t] = t](R, t). (29)

According to eqns (25), (26) and (29), S = s(R, t). For each value of t, Al (R, t) and A2(R, t)
give the stretch ratio distribution and s(R, t) gives the deformation state parameter dis
tribution over the particles of the membrane. A given value of the deformation state
parameter occurs at different particles R at different inflation levels t. For a fixed particle
R, these functions give the stretch ratio and deformation state parameter histories as t
increases.

It is assumed that for a fixed particle label R, there is an interval of values of t for
which s(R, t) has an inverse denoted by t = 7:(R, s). When this is used in (29), the stretch
ratio is related to the deformation state parameters s, i.e. A« = A«(R, 7:(R, s». Let i denote
the value of the crown stretch ratio at a previous level of inflation, and let s denote the
corresponding value of the deformation state parameter at particle R. Then,
i« = AiR, 7:(R, s». The stresses at a particle R undergoing conversion are then calculated
when this is used in eqn (28).

Let the following non-dimensional variables be introduced into eqns (16)-(22), (27)
and (28):
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(30)

The H_" notation is dropped for notational convenience. The form of eqns (16), (17), (19)
and (20) are the same as before. Q replaces qo/hoin eqns (18) and (22). J1R no longer appears
in (27) and (28) becomes

(X = 1,2, (31)

where J1 = J1N/J1R.
Suppose that the value of the crown stretch ratio t is sufficiently small that s ~ Sa for

all particles. The equations governing the corresponding inflated state are given by (16)
(22) and (27). These are reduced to a system ofdifferential equations for AI' A2' '1 as follows.
One equation is obtained by combining (15), (16) and (27) to give

(32)

where

(33)

with A3 given by (15).
A second equation is the compatibility relation obtained by eliminating r between eqns

(14) and (17),

(34)

The third equation is obtained from eqns (18)-(20) as

(35)

where

(36)

together with eqns (15), (27), (33) and (34). The use of the superscript He" indicates that
the expression applies in regions of the membrane where the material remains elastic.

An alternative to eqns (35) and (36) is the non-dimensional version of (22),

_ [2 (QAiA~R)2JI/2'1- ± Al - .
2(11

(37)

Boundary conditions are obtained as follows. Continuity of the deformed midsurface
implies that r = 0 and oz/oR = 0 at R = O. Equations (13), (14) and (17) then give

(38)

Since the sheet is fixed at its outer boundary,
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A2 = 1 at R = 1. (39)

The system of differential equations (32)-(36), together with boundary conditions (38) and
(39) define a boundary value problem for AI' A2 and '1 when Q is specified. Its solution
applies when t is sufficiently small that s(R, t) ::;:;; Sa for Re [0,1].

Next, suppose that the value of the crown stretch ratio t is such that s ~ Sa over part
of the deformed surface. As discussed in Section 3, this will be near the crown. The particles
in this domain are undergoing conversion. The complement to this domain contains par
ticles which are still unconverted. The radius of the interface between the converting and
unconverted material is denoted by Ra•

Equations (32)-(36) apply for Re[Ra , 1]. The equations for Re[O,Ra] are derived in
the same manner as were eqns (32)-(36), but with the constitutive equation given by eqn
(31). Let the expression for (11 be substituted into the first term in eqn (16). The result can
be written in the form

(40)

where I denotes the integral in the expression for (1( given by eqn (31), and

s' denotes the derivative of the function defined in eqn (26) with respect to its argument.
Recall the definition of 'T:(R, s) as the inverse of s(r, i) for fixed R. Thus, when stakes

the value s(R, t) in the integrand of l, 'T:(R, s(r, t)) = t and the integrand vanishes. It follows
that

(43)

The result of evaluating ol/oR can be written as

(44)

where

(45)

(46)

(47)

in which DAa is the total derivative of Aa with respect to R at a fixed value s of the
deformation state parameter,
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Aal and Aa2 denote the partial derivative with respect to the first and second arguments,
respectively.

Let eqn (40) and (44) be substituted into (16) and use be made of (32). This leads to

where

GAl _ N
oR - I,

(49)

(50)

with 0'1 and 0'2 given by eqn (31). An expression for orJloR is obtained by substituting eqn
(49) into (18) and again using (31). This expression is denoted by A~. The superscript "c"
refers to expressions which apply in regions where the material is "converting".

The boundary value problem now consists of the system of equations

OAI
oR =At ,

OA2 _ rJ- A2 _ A
oR - R - 2,

OrJ
oR = A 3 • (51)

Ai is given by A~ for R E [0, Ra], the domain ofconversion, and by A; for the complementary
domain, [Ra, I], where the material is still unconverted. Note that M = A~ = A2 • Continuity
of the solution is required at the interface between the domains. Boundary conditions (38)
and (39) still apply.

5. NUMERICAL METHOD OF SOLUTION

The response of the membrane involves an interaction between the conversion process
and the properties of the original and newly formed networks. The intention here is to
focus on the conversion process. Consequently, it is assumed that Jl.N = Jl.R in eqn (28), or
Jl. = 1 in (31). With this choice, it can be shown (Huntley, 1992), that the material softens
near R = 0. This occurs because the scission of the original material network causes its
contribution to the total stress to reduce faster than new contributions are produced by the
increasing deformation of the newly formed networks.

The solution procedure described here is based on the expectation, as described in
Section 4, that s(R, t) decreases monotonically with R, and hence that the membrane
consists of a central region of converting material, R E [0, Ra] and an outer region of
unconverted elastic material.

The boundary value problem associated with each inflated state is solved numerically.
The solution is found at radii denoted by Rj,j = 1,2, ... ,J, R t = 0, RJ = 1, and at values
of the crown stretch ratio denoted by tk • Solutions are first obtained for values of tk at
which the particles of the membrane remain elastic. After determining the value of the
crown stretch ratio at which conversion is initiated, solutions are then obtained for larger
values of tk corresponding to increasing conversion.

The method of solution for the elastic regime is discussed first. Let
tk = Al (0, tk) = A2(0, tk) be sufficiently small that s(O, tk) < Sa' As it is assumed that the



3306 A. S. Wineman and H. E. Huntley

greatest deformation occurs at R = 0, it follows that s(R, tk ) < Sa, RE [0,1]. A value of the
dimensionless pressure Q is assumed and the system of differential equations (32)-(36) is
integrated using the second order Runge-Kutta method. The integration process is begun
at R. = 0 using boundary condition (38) with t = tk • The Runge-Kutta method uses the
values of the right-hand sides of (32)-(36) at Rj in order to calculate the solution at Rj + •.

However, at R) = 0, the right-hand sides are undefined. This difficulty is resolved by the
analysis of Adkins and Rivlin (1952), who showed that a necessary condition for the
solution to be bounded at R I = 0 is that oAI!oR = oAz/oR = O'1/oR = 0 there.

A consequence is that the Runge-Kutta procedure, which is based on the increment
ation of the unknowns by values calculated from these derivatives, cannot get started. This
difficulty is avoided by using the alternative equation (37), with the positive sign. '1(R, t) is
then expressed in terms of Al (R, t) and Az (R, t). With this relation, the problem is reduced
to a system ofequations for Al and Az given by (32)-(34). Using the Runge-Kutta procedure,
variable R is incremented to the non-zero value Rz and the other quantities are evaluated
at R. = O. This causes a change in '1 from its value at R) = 0 which in turn allows the
integration process to get started. One integration step is carried out using this reduced
system. The full system (32)-(36) is used for the remaining steps, in order to allow auto
matically for the possibility that '1 = or/oR becomes negative at some radial node.

The computed value of Az(l, tk ) is used to check boundary condition (39). If the
boundary condition is not satisfied for the assumed value of Q, a new value is chosen by a
secant iteration method and the numerical integration of (32)-(36) is repeated. This process
is continued untilIAz(l, tk ) -11 ,,; e, for a specified value of e.

The method of solution when conversion occurs is discussed next. Now the crown
stretch ratio t has values tk for which s(O, tk ) > Sa, and integrals appear in the right-hand
sides Ai in (51) owing to their presence in the expressions for 0"[, O"z, A 3 , A 4 , A 5 • Consider
a specific radius R j and let the corresponding values of the deformation state parameter be
denoted by Sk, where

(52)

Note also that

(53)

Equal increments tk+) - tk need not correspond to equal increments Sk+ 1 -Sk. Moreover,
an increment tk + 1 - tk need not correspond to the same increment Sk+ 1 - Sk at different radii
Rj • Thus, the integrals are approximated by a Simpson's rule which allows for unequal
increments in the integration variable s.

Recall the notation fa = Aa(R, 7:(R, s». A typical term in the integral becomes

(54)

where use is made of (53) and WI denote the weighting coefficients

WI = (_CZ:C+2)15

W
z

= (c+ 1)3 15
6c

(55)
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Suppose that Sm < Sa and Sm+ I > Sa for some value of m. Then the value ta at which
S = Sa for a particle Rj lines between two nodes. Such a point is indicated by a triangle in
Fig. 1. As the lower limit of the integrals is Sa> it is necessary to find this value of tao Let
PA.iRj, t) be a second degree polynomial in t constructed by Lagrange interpolation through
the points (thA.a(Rj,tk», k=m-2, m-l,m. PA,,(Rj,t) is used as an approximation to
A,,(Rj, t) for te [tm- h tm+ d. Let Ps(R;, t) be a function of t which is an approximation to
s(Rj, t) for te [tm-h tm+ I]' It is constructed by using PArr.(Rj, t) in eqns (25) and (26). Then
ta is given by the solution to

(56)

The value for stretch ratio A.,,(Rj, ta) is then given by PA..(Rj, ta ).

Consider integration from Sa to s(Rj , tk ), for some value ofk. If there is an even number
of increments in this integration interval, Simpson's rule approximation (54) is used over
each pair of increments. If there is an odd number of increments, the integral from Sa to the
next largest value of s is approximated using a trapezoidal rule. The remaining integral is
over an even number of intervals and is approximated as before.

Now consider the system of eqns (51) for some specific value of the crown stretch
ratio, tK > ta• It is assumed that since the conversion process was initiated at R = 0,
continued inflation has caused all particles within some radius Ra to undergo the conversion
process. For each Re [0, Ra], AI and AJ contain integrals. These integrals can be approxi
mated by finite sum expressions which contain A.,,(R, ta), ••• , A..(R, tk)" .. , A.,,(R, tK ) and
similar terms in DA.. [see eqn (47)]. Suppose that A.,,(R, ta), . .. , A.,,(R, tK _ I ) and DA.,,(R, ta), ••• ,

DA,,(R, tK _ I ) have been previously determined. Then A~ and A'j depend on the unknown
functions Aa(R, tK ), 1'/(R, tK). They also depend on the variable R both explicitly and through
the dependence on R of the previously determined solutions corresponding to tk ~ tK _ I •

Thus, a set ofordinary differential equations for A..(R, tK), 1'/(R, tK ) on Re [0, Ra] is obtained.
The set for Re [Ra, 1] is given by eqn (51) with A; = A~.

This system of equations for the entire domain is integrated using the second order
Runge-Kutta method. This method is selected because evaluations are required only at the
nodal points Rj , and not at intermediate points as is called for by the fourth order method.
Recall that dependence on R arises through the previously obtained solutions AiRj, tk)'
1'/(Rj, tk), k < K, at these nodal points. The evaluation of Ai at Rj uses these previously
stored values.

z
:~=~.'.-.~2S~,;: \

! .-- ~ .' " ;~,""'~\L-.--<i---r--'''"' :>(...., ,
......../ ,' \ \

I
i

r
Fig. 1. Inflated profiles for increasing crown stretch ratios, showing the particle paths and conversion
front. Triangles denote the intersections of the conversion front (solid line) with particle paths

(dotted lines), rectangles denote intersections with profiles (dashed lines).
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The integration process beings at R 1 = 0 using boundary condition (38) with t = tK •

The Ai involve expressions which are undefined at R , = O. Since the Runge-Kutta method
requires the evaluation of Ai at the nodal points, the same difficulty arises which was
discussed in conjunction with the solution method in the elastic regime. By an analysis
similar to that of Adkins and Rivlin (1952), it can be shown that
oAI!oR = OA2/oR = OI1/oR = 0 at R 1 = O. The discussion provided in conjunction with the
solution method in the elastic regime again applies here.

Suppose a solution for Ao has been obtained at Rj • In order to proceed to Rj + I, it is
first assumed that the particle at Rj + 1 is undergoing conversion. The Ai are evaluated at
Rj + ( using the expressions for M, which apply in the conversion regime. These use the
stored histories Ao and their derivatives at Rj + 1, including the extrapolated approximations
to the values at conversion to' as solved from (56), and Ao(Rj+ [, ta) = PAo(Rj+ [, ta). The
values of Ao(Rj+ 1, tK) are calculated using the Runge-Kutta method, and the corresponding
value of the deformation state parameter is determined. Denote this value by sesl(Rj+ I, tK).
If sesl(Rj+[, tK) ~ Sa, the solution is accepted and the method proceeds to node Rj+2'

If sesl(Rj+ 1, tK) < Sa, it is assumed that the material at Rj+ 1 has not begun to convert.
A new radial node is introduced at Ra = Rj+IiR, IiR < Rj+ 1 - Rj, to represent the radius
Ra of the interface between the regions of the converting and unconverted material. Such a
point is indicated by a square in Fig. I. For a specified value of IiR, a Runge-Kutta step is
taken using equations for the converting regime to evaluate the solution at Ra • A secant
iteration method is used to determine IiR so that Is(Ri+IiR,tK)-sal ~ e. For RjE[Ra, I]
the material is assumed to be elastic and the governing equations are given by eqn (51)
with Ai = N. These are integrated using the Runge-Kutta method, with continuity assumed
at Ra•

This section is concluded with a discussion of two numerical operations which occur
in the computation of the various integrals. First consider oT/oR which appears in eqn (48).
It is evaluated at radius Rj and deformation state parameter Sk using the backward difference
approximation

(57)

where tj,k = t(Rj, Sk) and is the solution of

(58)

and tj_l,k = t(Rj_ [, Sk) and is the solution of

(59)

Second, the value of A02 = OAo/Ot appearing in eqn (48) is to be obtained at Rj and tk. This
is calculated using the backward difference

(60)

6, NUMERICAL EXAMPLE

In order to develop a numerical example, specific choices must be made for two
material properties: the deformation state function in eqn (26) and the rate of conversion
function a(s) introduced in (5). The form of the deformation state function is chosen as

(61)

According to eqn (61), s is constant on a circle in the / 1-12 plane. This curve in the 1(-12
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plane is selected because it is characterized by a single parameter, the radius, as opposed
to, say, a straight line which requires specification of its intercept with the II axis and its
slope.

As seen from eqns (15) and (25), the radius of the circle increases as 18 near R = 0. As
I becomes large, the radius increases very rapidly. If n = 2, for example, s also grows
very rapidly and the increments in I must become extremely small in order to control
computational error. This difficulty is avoided by selecting n = 8, so that s increases as I.

The rate of conversion function is chosen to be quadratic on a finite domain,

1

0, se[O,Sa),

a(s) = OC(S-Sa)(S-Sc), se[Sa,Sc],

0, se(sc,oo).

(62)

According to this definition of a(s) the process of material conversion occurs as the
deformation state parameter s increases over a finite interval and the process terminates
when s > Sc' Since the deformations under consideration are finite, the parameter s will not
exceed some finite value. Thus, Sc can be chosen sufficiently large that, in the present
example, the conversion process need not reach completion. [It should be noted that other
choices of a(s) can be made in which Sc is unbounded.] Let the total volume fraction of
material which may ultimately convert be denoted by C, where C :s;; 1. Then, recalling eqn
(7),

isc

C = a(s) ds.
s.

It then follows from eqns (62) and (63) that

6C
OC=---

(sc -sa)3

(63)

(64)

Values ofSa, Sc and C are selected so as to bring out the differences in response between
the membrane undergoing conversion and a neo-Hookean membrane (no conversion,
C = 0). Recall that I is the control parameter in the numerical simulation, and consider the
relation between the pressure Qand the crown stretch ratio I for a neo-Hookean membrane,
shown in Fig. 2. The local maximum in the pressure occurs at I = 2.20. Conversion is

2,.--------------......,

-- neo-Hookean

1.8

1.8

1.4

12

Ql
0.8

0.6

0.4

0.2

1.5

------- 'slow'
................. ,asr

2

t
2.5 3

Fig. 2. Pressure vs crown stretch ratio, for neo-Hookean, "slow" conversion and "fast" conversion.
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specified to commence at the particle at the crown of the membrane when t = 1.5. This
enables the influence on the local maximum of the pressure to be observed. The value of
the deformation state parameter at the particle at the crown corresponding to this choice
of t is Sa' It follows from eqns (15), (25), (61) and Al = A2 = t = 1.5 that Sa = 1.358.

For many choices of Sc and C, application of the numerical procedure discussed in
Section 5 has shown that the deformation state parameter S decreases for some particles
when t becomes sufficiently large. That is, these particles undergo reversal of deformation.
For particles which remain elastic (no conversion) this poses no difficulties. However, when
there is conversion at a particle, new complexities arise as indicated in conjunction with
eqn (10). Thus, values of Sc and C are selected so as to allow simulation to be carried out
over what is considered a reasonably broad range of deformations without the occurrence
of reversal of deformation. Accordingly, C = 0.25.

The simulation is carried out to t = 3.0. Let tc denote the stretch ratio of the particle
at the crown if the conversion process there were carried to completion. The corresponding
value of the deformation state parameter is Sc' As a first case, tc = 3.1 and Sc = 3.089 are
selected. Thus, at t = 3.0, the volume fraction of the material converted at the crown, by
(15), (25), (61)-(64), and Al = A,2 = t, is 0.99C. For the purpose of comparison, a second
case is considered with tc = 4.1 and Sc = 4.096. When t = 3.0, the corresponding volume
fraction of material converted at the crown is 0.64e. For convenience in discussing the
results, the first case is referred to as "fast" conversion and the second as "slow" conversion.

Equal radial increments I1R = 0.01 and crown stretch ratio increments /it = 0.01 are
used in the calculations.

The figures show results for three cases: no conversion (pure neo-Hookean response),
"slow" conversion and "fast" conversion. Figure 2 shows plots of pressure versus crown
stretch ratio. Note that the pressure has a local maximum in each case. The maximum is
reduced and occurs at smaller stretch ratios as conversion occurs faster. Recall that when
a particle undergoes conversion, the stress required to maintain a state of deformation is
reduced, i.e. the response softens. The plots show this effect. When some of the particles of
the membrane are undergoing conversion, their stiffness is reduced and less inflation
pressure is required to produce a specified stretch ratio at the crown. When the conversion
process occurs over a smaller range of stretch ratios, i.e. occurs "faster", material stiffness
reduces faster and therefore the required pressure is further reduced.

Inflated membrane profiles at a crown stretch ratio t 3.0 are shown in Fig. 3. This
stretch ratio is produced in smaller inflated shapes as conversion occurs "faster". Figure 4
shows the increase in interface radius with the crown stretch ratio. The radius increases
very rapidly as t increases from the value ta = 1.5 at initial conversion. It then approaches

1.6.,---------------,

1--"1------. 'slow'
................. 'fast'

1.4

1.2

Z 0.6

0.6

0.4

0.2

02 0.4 0.6 0.8 1.2

r
Fig. 3. Inflated profiles at a crown stretch ratio of t = 3.0, for neo-Hookean, "slow" conversion and

"fast" conversion.
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0
1 1.5 2

t
2.5 3

Fig. 4. Interface radius vs crown stretch ratio, for "slow" conversion and "fast" conversion.

a limiting value as t approaches te • This limit interface radius is larger when conversion
occurs "slower". That is, there is a larger conversion zone when the conversion is "slower".

The reason for the results shown in Fig. 3 can be determined from the plots of the
meridional and circumferential stretch ratios versus radius, in Figs 5 and 6, respectively.
Plots are shown for t = 1.8, just after initiation of conversion, and for t = 3.0. The stretch
ratios decrease from the crown to the support. At each particle undergoing conversion
R e [0, RaJ, the stretch ratios are less than they would be were the membrane material to
remain neo-Hookean. Therefore, the inflated profiles are smaller. Note that the unconverted
particles Re[Ra , 1] are at smaller stretch ratios than if there were no conversion. The
material within the conversion region stretches more easily because of the softening effect
associated with conversion. The response is softest near the crown. The specified crown
stretch ratio thus occurs in the softer converting material in the inner core while the
unconverted material in the outer layer is still at lower stretch ratios. This is seen in the
stretch ratio distributions for t = 1.8, at which the interface radius is 0.5452 for "fast"
conversion and 0.5551 for "slow" conversion. This effect is seen to be even stronger
when t = 3.0. The interface radius is 0.6602 for "fast" conversion and 0.7043 for "slow"

3-.-.,---------------,

2.5

2

1.5

-- neo-Hookean

------. 'slow'
................ 'fast'

1~-___,r-----r--...._--..__-_l
o 0.2 0.4 0.6 0.8

R
Fig. 5. Meridional stretch ratio vs R at t = 1.8 and t = 3.0, for neo-Hookean, "slow" conversion

and "fast" conversion.
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3.,.....0:--------------,

2.5

1.5

-- neo-Hookean

------. 'slow'
................. 'sst'

0.80.6
1+---..----..----.----......,---""1
o 0.2 0.4

R
Fig. 6. Circumferential stretch ratio vs R at t = 1.8 and t = 3.0, for neo-Hookean, "slow" conversion

and "fast" conversion.

conversion. As t increases from ta' the material near the crown undergoes increased con
version and softening of response. This occurs to such an extent that the stretch ratios of
these particles reach the specified crown stretch ratio accompanied by reduced stretch ratios
at the outer particles. Thus, in Fig. 5, consider the particles at radii greater than 0.7. For
the case of fast conversion, the stretch ratios at these particles become smaller at t = 3.0
than at t = 1.8. This suggests the evolution of a deformation reversal zone near the outer
support, which spreads to meet the converting zone. When conversion is "faster", this
reversal zone spreads faster.

Figures 7 and 8, respectively, show plots of meridional and circumferential stresses
versus crown stretch ratio for various radii. The stresses for the non-conversion (neo
Hookean) case increase monotonically with t at each radius. This increase is diminished by
conversion. At R = 0, the increase is monotonic, although slower. At R = 0.4, the increase
is still monotonic. However, the rate of increase is substantially reduced as conversion
occurs faster. Note that, at R = 0.8, the meridional stress in the converting material has a
local maximum and then begins to decrease. This occurs at particles in the outer region

9,.----------------,

------. 'slow'

-- neo-Hookean8

7

8
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3

................. ,asr

1.5 2
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2.5 3

Fig. 7. Meridional stress vs crown stretch ratio for neo-Hookean, "slow" conversion and "fast"
conversion at several radii.
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Fig. 8. Circumferential stress vs crown stretch ratio for neo-Hookean, "slow" conversion and "fast"

conversion at several radii.

which remain elastic. As observed above, the stretch at these particles reduces, and by eqn
(27), so does the stress.

In summary, these results show that conversion can have significant implications. The
softening of the more highly stretched material can allow redistribution of defonnation
throughout the membrane and recovery of defonnation of the stiffer unconverted material.
This possibility will be explored in future work.
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